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Abstract: People with diabetes mellitus type 1 could benefit from fully automated systems for
glucose control. However, faults in any component of the system can severely compromise the
safety of the user. An increasing degree of automation also increases the risk that faults remain
undiscovered for longer periods – unless automated routines for fault detection are implemented
at the same time.
The aim of this article is to give a categorized overview of methods for fault detection in glucose
control systems. This overview targets at disclosing hidden potentials for improvement and
unresolved issues.
Methods for fault detection in glucose control systems have been reviewed and classified with
respect to categories such as the type of method and the exploited data basis. Both journal and
conference papers were taken into account.
Compared to the number of studies on glucose control algorithms, only a few articles have been
published on fault detection. Surprisingly few of them consider system information beyond the
standard diabetes care data.
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1. INTRODUCTION

Glucose control is an essential part of daily life for people
with diabetes mellitus type 1 (DM1). Because of destroyed
insulin-producing cells in the pancreas, a person with DM1
has to regulate the blood glucose level (BGL) manually.
Technological advancements have been achieved that help
affected people: continuous glucose monitors and pumps
for continuous insulin infusion are available nowadays.
The subcutaneous (SC) tissue is commonly used for both
insulin infusion (ISC) and glucose sensing (GSC). The au-
tomation of these systems is the next goal of many rese-
arch groups. Increasing automation requires an increasing
degree of reliability because users will naturally pay less
attention to the correct functioning of a system that is
supposed to work automatically.

Figure 1 shows a simplified sketch of the units of an
artificial pancreas (AP). Input into the AP is the real
glucose concentration (Greal) at the sensor location. The
sensing unit transmits the measured glucose concentration
(Gmeasured) to the controller unit where the intended insu-
lin infusion rate (IIRintended) is determined. Based on that,
the insulin infusion unit injects the real insulin infusion
rate (IIRreal). As indicated here, the measured glucose
concentration differs from the real glucose concentration.
The same applies to the intended and the real insulin
infusion rate.

These discrepancies are potentially dangerous when the
deviations become too large; since a correct dosing of
insulin is not longer ensured even if the controller unit
is working fault-free.

Faults can occur in all units of the artificial pancreas and
require various actions. It is important to understand the
potential occurrence and impact of a fault in order to
address it adequately. A systematic risk analysis guides
to this understanding. Based on that knowledge, suitable
fault detection and diagnosis functions can be developed.
The number of publications on fault detection is slightly
increasing over the years as figure 2 shows. The total
number per year, however, is still very low given the
effort put into clinical studies to test closed-loop control
algorithms. This paper categorizes published methods for
fault detection and diagnosis in glucose control systems
to provide an overview of available work for fellow rese-
archers. Remarkably few investigated other sensors than
continuous glucose monitoring (CGM) for fault detection.

2. FAULT DETECTION

A fault causes the system to deviate from its normal
behaviour (Isermann, 2006). Communication dropouts, i.e.
when the signal transfer between sensor and controller or
controller and pump is disrupted, may be immediately
noticed at the receiving unit by application of appropriate
mechanisms in the communication protocol. Appropriate
actions can thus be directly initiated upon those incidents.
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Fig. 1. Typical components of an artificial pancreas.
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Fig. 2. Number of publications on fault detection in glucose
control systems per year.

Other faults such as a disrupted insulin infusion have
less obvious effects and require more complex detection
methods.

Table 1 shows publications on fault detection in glucose
control systems. Contributions in both journal and con-
ference papers are considered, whereas posters and oral
presentations at conferences and related abstracts have
been omitted. Most of the publications address the ISCGSC

AP approach (i.e. SC insulin infusion and SC glucose
sensing) for patients with DM1, whereas some deal with
the treatment of hyperglycemia in critically ill patients.
The intravenous route for insulin administration differen-
tiates the intensive care unit (ICU) substantially from the
outpatient setting. The ICU application was still included
here because of the common use of GSC. Table 1 classifies
all methods of each study by several categories. One row
of the table refers to one method in a publication. Thus,
publications comparing different methods are listed more
than once. More than one mark in the method category
indicates a combination of different methods. Although
a retrospective data analysis is originally reported twice
(Bondia et al., 2008; Cescon et al., 2016), all methods in
table 1 are generally suitable for real-time applications.

2.1 Fault modes

Fault detection in the AP has mainly focused on sensor and
infusion faults. Among the sensor faults, isolated spikes
and transient negative bias were addressed particularly
often. Both fault modes were considered as intermittent
faults. Isolated spikes are inherently random signal abnor-
malities rather than permanent sensor failures. The nega-
tively biased sensor signal is usually transient because its
major given cause is lost sensitivity due to pressure indu-
ced sensor attenuation (PISA) during night, which ceases

as soon as the patient moves and the pressure is relieved.
Zhao and Fu (2015) used steps to model isolated spikes
and a biased signal. Generic signal anomalies (positive and
negative steps, exponential changes and drift, and random
noise) were analyzed by Turksoy et al. (2015). Although
those anomalies cannot be directly related to particular
faults, they build a comprehensive basis for signal fault
modeling in simulation studies. The question raised in four
publications (Bondia et al., 2008; Tarin et al., 2010; Leal
et al., 2013b,a) is not a particular type of CGM faults but
whether the sensor readings are faulty or fault-free.

The studied fault modes of the insulin infusion unit are
no delivery, under-delivery and over-delivery. Although
different faults are claimed to cause no delivery and under-
delivery, i.e. disconnection (Baysal et al., 2013b; Herrero
et al., 2012), leakage (Herrero et al., 2012), and complete
(Facchinetti et al., 2013) or partial occlusion (Del Favero
et al., 2014; Finan et al., 2010; Rojas et al., 2011b,a; Vega-
Hernandez et al., 2009a), a further differentiation into fault
causes seems not favorable here since the faults are not
further examined after detection.

2.2 Methods

We differentiate between process model based and signal
based methods. Process model based methods use a model
of the process to reveal the occurrence of a fault by
e.g. analytical redundancy. Signal based methods can be
purely threshold based and reveal a fault when a process
variable exceeds a given threshold. Other signal based
methods are process history based: statistical or non-
statistical features are extracted from historical data with
known states (Venkatasubramanian et al., 2003). New data
with unknown state is analyzed by means of these features.

Signal based methods predominate over process model
based methods in table 1. An explanation could be the
challenge of modeling the process as accurately as needed
for fault detection. The reported process model based
methods take uncertainties into account by observing sta-
tes with frequent input updates or estimating an interval of
the states. Most of the more recently published methods,
however, contain some sort of process history based ana-
lysis. This complies with the overall trend of exploiting in-
formation from data sources. Threshold checking of CGM
data is rather used supplementary to confirm the detection
by another method. An increased glucose concentration
can, for example, confirm a disrupted insulin infusion
(Howsmon et al., 2017).

2.3 Data input

All listed fault detection methods are based on CGM
data. The insulin infusion rate, typically the “intended
infusion rate”, is also very common as information source,
in particular to detect faults in the insulin infusion unit.
Some methods require manual meal information by the
user.

Apart from these standard measures in diabetes care,
other data has been rarely considered. Only three different
authors included data on the sensor status (Bondia et al.,
2008; Tarin et al., 2010; Leal et al., 2013b,a) in their
fault detection. The reason may be that the manufacturers
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of sensing devices integrate fault detection themselves
and advice the user to change the sensor upon detected
long-lasting failure. However, control systems could also
benefit from access to this information to adjust the
control system’s action before a fault has developed into a
complete failure.

Body temperature and septic status have been considered
for intensive care patients (Leal et al., 2013b,a). Data
from an activity monitor was recently integrated into fault
detection for DM1 to better know the patient’s physical
condition (Turksoy et al., 2017a). To our knowledge, this
potential source for reliable fault detection has not been
investigated by further academic groups.

3. DISCUSSION

3.1 Fault detection

Despite a great research effort on automation of glucose
control systems, only few academic groups have published
methods for fault detection.

Recent work focuses on the detection of sensor faults
rather than infusion faults. This can be explained by the
importance of reliable sensor information for the whole
control system. Continuous glucose monitoring (CGM)
data serves often as the sole basis for the control actions as
well as for the fault detection and diagnosis in remaining
components. A reason for disregarding the detection of
insulin infusion faults might be that the SC dynamics deem
a timely detection of insulin infusion faults challenging
(Christiansen et al., 2017) if no other information than
SC CGM data is available.

In one journal article, the authors integrate data from a
fitness armband into a routine for fault detection Turksoy
et al. (2017a). Given the recent popularity of fitness
trackers it is surprising that no more research has been
published on the use of health monitoring data for fault
detection in glucose control.

3.2 Fault diagnosis

The distinction between actual component faults and dis-
turbances is a challenge, and an appropriate trade-off
between robustness and sensitivity needs to be established.
Furthermore, physiological changes within the patient may
be falsely classified as faults in other components and
may result in misplaced triggering of safety functions.
The detection of faults is clearly not enough to ensure
the right control decision. Further knowledge about the
fault is needed. General desirable characteristics of fault
diagnostic systems are well described elsewhere (Venkata-
subramanian et al., 2003). In the following, fault diagnosis
in the AP is briefly discussed.

Fault isolation Isolability of different faults is one of
the central desirable properties. It is not only of interest
whether or not the system has a fault but also in which
component the fault has occurred. Despite automatic
system decisions, this information can assist the user in
choosing the right action, e.g. changing the sensor rather
than the insulin infusion set or vice versa.

Fault isolation is more ambitious than fault detection
because it goes beyond the classification into “fault-free”
and “faulty”. Appropriate features have to be identified
which allow to distinguish between faults.

The isolation of different faults of the same component,
for example of two different sensor fault modes, has been
achieved with several methods (see table 1). Only one
research group aimed, however, to detect both sensor and
insulin infusion set faults simultaneously with the same
methods. The isolation of sensor faults, insulin infusion
set faults and meal faults (meal estimation errors and
meal-bolus faults) was realized by comparing CGM me-
asurements with their predictions and confidence intervals
(Del Favero et al., 2014).

Such threshold based methods have, however, a limited
fault sensitivity, at least if thresholds are used exclusively
on the glucose concentration. Narrower lower and upper
thresholds increase the sensitivity but the required robus-
tness against variability restricts this possibility.

Additional activity monitors, for example, can help to
identify if dropping CGM values are caused by physical
activity or PISA (Baysal et al., 2013a).

Fault identification Knowing that a certain fault has
occurred, the next step of fault diagnosis would be to
estimate the severity of a fault. Only one method of fault
identification has been published. This method identifies
the magnitude of altered insulin delivery (Vega-Hernandez
et al., 2009a) and uses the information to adjust the insulin
infusion rate accordingly (Vega-Hernandez et al., 2009b).

In medical applications, it is common to use consumables.
The components concerned are therefore very likely to be
exchanged after a fault has been detected and successfully
isolated. This might be the reason why most methods pu-
blished on fault diagnosis in AP end with fault detection.
However, the magnitude of the fault may be determined as
well to allow control adjustments to ensure safe operation
despite the presence of faults. This can be useful, for exam-
ple, when it is not possible to change the insulin infusion
set immediately. Another example is a PISA: since this
phenomenon is transient, a replacement of the sensor is
not necessary. Nevertheless, the real glucose concentration
is of interest for the control system.

3.3 Validation using simulations and clinical data

Computer simulations are often the first step to test new
algorithms for fault detection. Various fault models are
used for that. However, the published methods in table 1
have been tested under a variety of conditions including
different simulators and cannot be directly compared with
each other. Another challenge that occurs when one tries
to compare different algorithms is missing information in
publications, for example unreported values of model and
tuning parameters. This renders an implementation and
fair testing of different methods on the same data set
almost impossible.

Clinical data are in general the gold standard to validate
new methods. All investigators working with glucose con-
trol face the challenge that the effect of many faults is not
immediately significant. The exact time of onset is often
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hardly assessable nor is the fault source reported. Models
of fault-free processes, on the other side, require large data
quantities without faults. As it can become quite expensive
to have experienced people reviewing large data sets, the
community should probably work together to achieve a
suitable data set.

4. CONCLUSION

Fault detection is an essential part of an artificial pancreas
to guarantee safety at any time. Automated fault detection
gained more academic attention in recent years. However,
compared to the worldwide effort to achieve closed-loop
glucose control, few publications deal with fault detection
and diagnosis.

Methods on fault detection are based on continuous glu-
cose monitoring data as standard, often supplemented by
the intended insulin infusion rate. Future research should
explore alternative ways of monitoring the state of the
equipment and the physical condition of the user. For
example, fitness trackers became generally very popular
and should be further investigated.
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